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ON THE USE OF A SPRING-MASS TO APPROXIMATE A
BAR-MASS SYSTEM SUBJECTED TO A
RECTANGULAR FORCE PULSE*

A. E. Seigeri and R. H. Waser

U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland

Abstract—An analysis with experimental confirmation of a bar-mass system is described. The bar is built in at
one end and has a rigid mass connected to the other end. To the rigid mass is applied a rectangular-step-force
pulse of magnitude such that the bar is elastically deformed. The resulting behavior of the bar~mass system
is calculated with the assumption that the stresses in the bar are one-dimensional. These calculations yield the
fact that the bar-mass system experiences forces that are significantly larger than those experienced by an
equivalent spring—-mass approximation in the case of short pulse duration and/or magnitude of mass. The cal-
culated results are confirmed by experiments performed on a bar—mass system.

NOMENCLATURE

cross-sectional area of bar
Lagrangian length coordinate
Young’s modulus

strain

force

maximum force at the built-in end of a system
spring constant

length of bar

mass of rigid mass

mass of bar

initial mass density

stress

natural period

time

dimensionless time

force pulse duration

particle velocity

distance coordinate
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1. INTRODUCTION

IN ORDER to calculate the stresses experienced by a structure subjected to rapidly applied
loads, the structure is often approximated as a system of spring-masses (see, for example, [1]).
The structure of interest here is one of the simplest, the so-called ‘‘bar-mass system.” It
consists of a bar of mass, m, built in at one end and connected to a rigid of mass, M, at
the other end. The spring-mass approximation in this instance consists of a massless
spring having the elastic characteristics of the bar: this spring is similarly built in at one
end, but at the other end is connected a rigid mass increased in mass to account for the

T This paper is partly based on a thesis submitted by Mr. R. H. Waser to the Mechanical Engineering Depart-
ment of the University of Maryland as partial fulfillment of the requirements for the degree of Master of Science.
I Lecturer, Mechanical Engineering and Aerospace Engineering Departments, University of Maryland.
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inertia of the bar to a value of M +m/3.T The bar-mass system and the spring-mass
approximation are shown in Fig. . To be examined is the case of suddenly applied
rectangular force of duration At acting on the rigid mass as depicted in Fig. 2. The magnitude
of the force is assumed to be limited such that the bar is elastically deformed. The question
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F1G. 1. Bar—mass system (a) and spring-mass approximation (b).
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F1G. 2. Bar-mass system and applied force pulse.

+ This spring-mass approximation yields a natural period, T,, which is in good agreement with the fundamental
period of the bar—mass system as calculated from the one-dimensional stress-wave theory (see, for example, [2]

and [3]).
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to be answered in this study is the following: How accurately are the maximum forces
experienced by the bar-mass system under such a rectangular loading calculated from the
use of the spring—mass approximation?

The behavior of a spring-mass system subjected to a rectangular pulse is well known
(see [4), for example). The spring, being massless, experiences the same force throughout
its length. The maximum force experienced by the spring, and hence at the built-in support,
depends on the pulse duration as shown in Fig. 3. However, the behavior of the bar-mass
system is not generally known but may be calculated by assuming that the stress in the
bar is one-dimensional.

With the one-dimensional assumption the elastic behavior of the bar-mass system
was calculated for the entire range of pulse duration At, and mass ratio m/M. These calcula-
tions are outlined below. The results of these calculations, and particularly the calculated
maximum forces, were then compared to the spring-mass approximation. To confirm the
calculations an experimental check of one of the calculated cases was performed.

2. BAR-MASS EQUATIONS

The bar—mass system is visualized as shown in Fig. 2. The equation of motion of the
mass, M, considered as a rigid body, see Fig. 4, is
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F1G. 3. F,.,/Fp vs. force pulse duration for a spring-mass system

¥ One-dimcnsipna! wave-propagation problems of the elastic behavior of a bar were treated long ago. For
example, the longitudinal impact of a rigid mass with a bar, a problem similar to the one of interest here, was
treated in 1883 [7] (see also Love [5] and Goldsmith [6]).
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where M is the mass of the rigid body, u, is the velocity of the mass, o, A4 is the force exerted
on the mass by the bar, and F(t) is the force applied to the rigid body.

The behavior of the bar is governed by the continuity and momentum equations which
with the assumption of one-dimensionality take the following form in the Lagrangian
coordinate system :

ox +1
- =g
ca
(2)
do L
da %0t
o, A
M +U
F (t)

FIG. 4. Free body diagram for rigid mass.

where x, ¢, 0, po, and u are the distance coordinate, strain, stress, initial mass density, and
particle velocity, respectively; the Lagrangian coordinate *“a” is measured in the un-
strained bar as shown in Fig. 2.

For one-dimensional elastic deformations the stress—strain relation is simply
=FE (3)
&

where E is Young’s modulus.

Equations (2) and (3) may be transformed into many forms of the classical wave
equation with constant sound speed. Here it was chosen to put these equations in a form
suitable for the method of characteristics ; thus, by following Courant and Friedrichs [8].
equations (2) and (3) become the characteristic equations

6(¢6)+ﬁ6($6)0 “@
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At the position where the bar and mass are joined (i.e. at the ¢ = 0 position)

=0,

and (5)
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At the built-in end of the bar (i.c. ata = )
u=0. 6)

Equations (1, 4-6) are sufficient to determine the behavior of the bar-mass system for a
given applied force, F(t).

A characteristic diagram in the a—t plane which depicts the paths of disturbances
(i.e. the characteristic lines) appears as shown in Fig. 5. Each of the regions I, 11, 111, etc.
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F16. 5. Bar—mass characteristic diagram.

is bounded by the first disturbance and its reflections from the built-in end and from the
rigid body. In each of these regions it develops that through the use of equations (1, 4-6),
closed-form analytic expressions may be obtained for stress, displacement, velocity, etc.,
for the case of an applied rectangular force. [These resemble the equations obtained by
Love [5] (see also [6]).] These expressions were numerically evaluated by hand to obtain
the results discussed below.

3. RESULTS OF CALCULATIONS

Figure 6 indicates the calculated maximum forces experienced at each end of the bar
when the constant force is maintained indefinitely (At = 20). As seen from the figure, the
maximum force experienced at the fixed end of the bar (a = [) is always greater than 2
(except at m/M equal to zero and infinity). This is an unexpected result since the spring-
mass analogy yields a maximum force ratio of 2. It is reasoned that this occurs because of
the inertia of the bar. The bar, having attained a velocity as a result of being pulled by a
rigid mass, continues its motion because of its inertia beyond where an inertialess spring
would stop. This result differs from that of the spring-mass analogy (for which the maximum
force ratio is equal to two), because the inertia at the bar is not properly accounted for
in the analogy. An improved representation of the bar mass would be to represent the
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Fi1G. 6. Calculated F,,,,/F, vs. mass ratio for a step-pulse of infinite duration.
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FIG. 7. Bar itself of bar-mass system (a) represented as spring—mass in (b).
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bar itself as a spring mass, as shown in Fig. 7. In this case, calculation indicates that the
force at the built-in end will exceed the value of twice the applied force.

Figure 8 illustrates the calculated force-time history at the built-in end for several
m/M ratios for the constant force indefinitely maintained case. It is to be noted that the
time duration during which the force is greater than 2 decreases with increasing m/M
ratios.

For the particular case of m/M ratio equal to 2, the forces at each end of the bar and
the rigid mass displacement are plotted in Fig. 9. It is noted that the displacement curve
appears somewhat harmonic ; the force histories are definitely nonharmonic.

If the force applied to the rigid mass is suddenly removed after a time, At, the disturbance
wave originating upon this removal will decrease the force in each part of the bar that it
passes through. Until the time at which the removal pulse disturbance reaches a given
point in the bar (this time being At plus a/./E/p,), the continuous pulse analytic ex-
pressions are still applicable. The results of the calculations for the finite length pulse
case are shown in Fig. 10 which is a plot of F,,./F, vs. At/T, for various m/M ratios. The

mn
M

BUILT -IN
END

LLLLL L LLL

3

>

02 04 06 08 10
DIMENSIONLESS TIME —
n

FiG. 8. Calculated F/F, vs. time at @ = [ for a step-pulse of infinite duration.
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FIG. 9. Calculated forces and displacements vs. time for a step-pulse of infinite duration, m/M = 2.

m/M equal to zero curve in this figure corresponds to the spring—mass system. It is seen
that there is considerable difference between the spring-mass case and the larger ratio
m/M bar-mass cases. In all cases the spring—mass approximation yields lower forces than
actually occur in the bar—-mass system.

The error resulting from the use of the spring-mass approximation is more clearly
seen from Fig. 11. This figure is a plot of the error in F,,,/F; vs. the dimensionless pulse
duration, At/T,, for various m/M ratios. [t is seen that large errors will result from the use
of the spring—mass approximation in the case of short-duration pulses and large m/M ratios.

4. EXPERIMENTAL CONFIRMATION

To verify the results of the calculations, experiments were performed using one particular
mass ratio, m/M. (The same experiment was repeated eight times, yielding results consistent
within 5 per cent.) The mass ratio chosen was 2, since the calculated F,,,,/F, for this mass
ratio was 2-40, which is much above the value 2 obtained from the spring-mass
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approximation and which is close to the theoretical calculated maximum of 2-43. Because of
the experimental difficulty of suddenly applying a force to a bar—mass system, the experiment
involved instead the sudden release of a force from the bar-mass system. That the calculated
case of the sudden application of a force 1s equivalent to the experimental case of the
sudden release of a force becomes evident if one uses in the equations describing the experi-
mental case the variables «’ and ¢’ defined as follows :
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F1G. 10. Calculated F,,,,/F, at a = I vs. force pulse duration.

With these redefined variables used to describe the experimental case, both the initial
conditions (at ¢t = 0) and the equations describing the motion of the bar and rigid mass
at all subsequent times (¢t > 0) are identical for the two cases. The two situations are
compared in Fig. 12.F

The experimental bar-mass apparatus at a time equal to zero appeared as shown in
Fig. 13. The length and material (tungsten) of the rigid mass were chosen relative to the
length and material (glass) of the bar so that disturbances would travel back and forth in
the rigid mass about 32 times as fast as in the glass bar; thus, effectively, the tungsten

+ The bar—mass system is pictured inverted relative to the usual illustrations to make it appear like the actual
experimental system which, of necessity, was inverted (see Fig. 13).
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Fig. 1. Calculated error in maximum force at ¢ = / from use of spring-mass approximation.

rigid mass approximates a true rigid body relative to the glass bar. Glass was chosen as
the bar material since it follows Hooke’s law as closely as can be experimentally deter-
mined [9]. The rigid restraint at the built-in end was made of tungsten and of sufficient
mass relative to the glass bar that it moved very little during the experiment.

The physical characteristics of the bar—mass system used in the experiments are given

in Appendix A.

+ As mentioned below, the effect of the motion of the rigid restraint was calculated.
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F1G. 12. Comparison of theoretical and experimental systems.

The complete assembly was supported by a nylon cord passed through a hole in the
rigid mass and tied above to a support. In this manner, the system was initially stressed
by a force equal to its total weight. Release of this force to provide the desired loading
pulse was accomplished simply by burning the nylon cord supporting the system.

The force (or stress) experienced by the bar at its built-in end was obtained through
the use of a pair of SR-4 type strain gages cemented to the bar. These gages were connected
into a Wheatstone bridge in an additive manner so that any bending strains would be
cancelled. The output from the bridge was displayed on an oscilloscope equipped with a
camera for photographing the traces. The oscilloscope was triggered from a semiconductor
strain gage mounted on the glass bar at the end nearest the rigid mass. In this manner, the
oscilloscope sweep was initiated before the stress disturbance reached the strain gages
at the built-in end of the bar.

A typical oscilloscope trace obtained from one of the eight tests is shown in Fig. 14.
The horizontal trace at the bottom of the photograph was made with the bar-mass system
in its initial prestressed condition, and the trace in the center of the picture was made
after the force had been released and the system had stopped vibrating. Thus, the distance
between these lines represents the magnitude of the force, Fy, applied to the system. The
oscillatory trace in this figure is the measured force felt at the built-in end of the bar.
The points superimposed on the osciiloscope trace in Fig. 14 are the results of calculations
for this case which take into account the fact that the restraint at the built-in end of the bar
is actually not absolutely rigid. It is seen that the agreement between the experiment and
theory is quite good. The Fi,/F, ratio (where F,, = Fy— Fn.) measured from the
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photograph is 2-24, whereas 2:30 is the value calculated taking the non-rigidity of the
restraint into account. (With an absolutely rigid restraint the value would have been 2-40).)

5. CONCLUDING REMARKS

This study indicates that the use of a spring-mass system to approximate the elastic
behavior of a bar-mass system may result in very large errors; specifically, the maximum
force as calculated from the spring-mass approximation is always less than, and is some-
times considerably less than that actually occurring in the bar-mass structure when it is
subjected to a rectangular force pulse.
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FiG. 13. Experimental bar-mass system.

As seen from Fig. 11, the error in maximum force resulting from use of the spring-mass
approximation depends on the time duration of the pulse and the mass ratio m/M. When
the pulse duration is short and the mass ratio large, the error is large (e.g. at At/T, = O-{.
and m/M = 2, the error is 55 per cent), whereas the error becomes smaller with increasing
pulse duration and decreasing mass ratio. (It is interesting to note that in the case of
long-duration pulses the ratio of the force experienced to that applied is greater than 2
(going as high as 2-43) for the bar-mass system, whereas this ratio is exactly 2 for the
spring—mass approximation.)

It is speculated that errors will similarly result from the use of the spring-mass approxi-
mation in cases where the applied force pulse is other than rectangular (e.g. triangular).
For any type of pulse, however, the results of the use of spring—masses to approximate the
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F1G. 14. Comparison of experimental and theoretical results.

behavior of an actual structure become increasingly accurate as the number of spring—-
masses is increased, for by subdividing the actual structure into more and more spring-
masses, the inertia of the structure is more and more accounted for.
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APPENDIX

Rigid mass. A piece of Mallory 1000 Heavymetal (sintered combination of 95 per cent
tungsten and 5 per cent Cu—Ni), 0-500in. in diameter and 0-303 in. thick, weighing
0-03611b, E = 45x 10°Ib/in.?, p, = 1-61 x 1073 Ib sec?/in.*
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Bar. A glass rod (Corning 7740 Borosilicate), 0-312in. dia. and 1198 in. long, weighing
0-07301b, E = 9 x 10°1Ib/in.2, p, = 2:06 x 10~ * 1b sec?/in.*

Restraint. A piece of Mallory 1000 Heavymetal, 2-13 in. dia. and 1262 in. long, weighing
28-0 1b.

The experimental bar-mass system thus had an m/M ratio equal to 2-02. A thin layer
of epoxy cement was used to join the components of the system together.

(Received 17 July 1968 : revised 20 January 1969)

A6cTpakT—BMecTe ¢ IKCIEPUMEHTANIBHbIM TOATBEPKACHUEM OIUCLIBAETCA 3a4a9a CUCTEMbl CTCPKHA U
maccbl. CTepikeHdb 3aKPETUIeH HA OIHOM KOHLIE M MMEET XKECTKYHO MacCy, CBA3aHHYIO C APYTUM KOHLOM,
JTa Macca HAXOOMTCA MO BIMSHUEM TPAMOYTONBHOTO CTYMEHYATOrO WMMNYIbca CUibl. Benuvuua 3roro
WMIlyJbca TAKOBA, YTO BI3BIBAET YNPYryto nedhopmanunio CTepxkHs. BoicunTano pesynsTaTsl NOBEACHMS
CHCTEMBI CTEPkKEHb-Macca, NPEANoNaras, YTo HaTPSKEHUs! B CTEPkKHE OAHOMEPHBI. PacueTsl yKka3bigatloT Ha
GaKT, 4TO 7Ta CHCTEMA BBI3BLIBAET YCHJIMS 3HAUMTENBLHO OONBUIME, YeM BbI3BAHHBIE IKBUBANICHTHBIM
TIPUEIHKEHMEM MPYKUHA-MACCA, AN C1y4as KOPOTKOTO NEHCTBHSA MMIYIBCA UM MAJIOH BEHUYHMHBI MACCHI.
IMony4exHble Pe3yabTaThl MOATBEPXKIAIOTCA IKCTICPUMEHTATbHLIMH MONYHCHHBIMH HA CUCTEME CTEPKEHD-
Macca.



